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also shown that interface location and temperature distri- 0.4- 

bution depend on three parameters; /I = L/C,,(T’ - T,), 
rt = (K,/KJ (T - Q/(7” - T,) and a = aJar The di- 
mensionless temperatures in the solid and liquid are; 

T,* 
0.2- 

T; = (&/IQ (TL - TF)/(TF - T,) and T: = (T, - TF)/ 

(TF - Tw). 
Table 1 gives a comparison between experimental and 

theoretical values of _$, which is the interface location at 
x* = y* for three different values of p and Tt. In each case 
the experimental value for I$ was calculated at different 
intervals of time. Results -indicate that for a given p and 
Tf, $ is nearly constant which confirms the similarity 
nature of the problem as predicted by theoretical considera- 
tion. 

T, 

Figure 4 gives the liquid temperature transients at the 
diagonal x* = y* for various locations. We observe that the 
profiles do not coalesce into a single curve as predicted by the 
theoretical solution. This is a direct consequence of the 
temperature inversion due to density variations of the liquid. 

0 Experiment 
-Neumann’s solution 

The one-dimensional behaviour of the system far away 
from the comer is illustrated in Fig 5. Temperature measure- 

-1.0 
ments at x = 104 in from the corner are compared with 
Neumann’s one-dimensional solution Excellent agreement FIG. 5. Comparison between temperature measurements in 

is observed in the solid region. the one-dimensional region (x = 10.4 in.) and Neumann’s 
solution. 
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NOMENCLATURE I,(x), modified Bessel function of the first kind ; 

E,(x), exponential integral function ; J,(x), Bessel function ; 

erf(4. error function ; K,(x), modified Bessel function of the third kind ; 

erfc(x), complementary error function ; k thermal conductivity ; 

h, coefficient of surface heat transfer ; Qo> maximum flux of heat source ; 
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Qw% source function; 

q(x), = Q@x,B)lQe, non-dimensional source function ; 

t, = ar/b2, nondimensional time; 

T, = ~/c&~~Q~, non-dimensional temperature; 

x, = y/j, nondimensional distance from center of 
heat source ; 

Y, distance from center of heat source ; 
a, thermal diffusivity ; 

B1 half width of strip source, radius of disk source, 
parameter in Gaussian source ; 

6, thickness of plate ; 
2, = 2h/P/kS, non-diiensional coefficient of sur- 

face heat transfer ; 
c, integral transform variable; 

r, time ; 
8, temperature. 

INTROLXJCTION 

SEVERAL types of conduction heat transfer applications 
invotve the determination of transient temperature in a thin 
plate heated over a portion of its surface. Typical applica- 
tions include the heating of metal plates with a laser or 
incendiary, drilling holes in metal, acetylene burning, arc 
welding, and friction heating of machine parts. Several 
solutions for disk, strip and point sources can be found in the 
literature [l, 21, usually in the form of a definite integral 
which mwt be solved by numerical quadrature. The two 
general solutions derived in this paper encompass most of 
the special case solutions encountered in the literature. In 
addition, these general solutions extend the range of applic- 
able problems to two large classes of source functions. Some 
new solutions in “‘closed” form are presented. In addition an 
integral solution, obtained by P. H. Thomas [1] for strip 
heating, has been reduced to a closed form. 

The two general problems examined include thin plates 
heated by sources having symmetry about the line x = 0 
and thin plates heated by sources having circular symmetry 
about the origin The source terms are required to have the 
following properties : 

(i) The source term q(x), having symmetry about the line 
x = 0, is assumed to be such that its Fourier cosine 
transform exists and that &@x = 0 at x = 0. 

(ii) The source term q(x), having circular symmetry about 
the point x = 0, is assumed to be such that its zero- 
order Hankel transform exists and that 4(O) is finite. 

In all cases the heat loss at the surface of the plate is assumed 
to be subject to Newton’s Law of Cooling. 

SOURCES SYMMETRICAL, ABOUT A LINE 
The partial differential equation and boundary conditions 

governing this case are 

2 
~+e2T=~+q@hx>o,t>o, (1) 

aT - 0 ax- ’ 
x = 0, t > 0, 

T+O, x+co,t>o. (4) 

By application of the Fourier cosine transform to (1) we 
obtain the subsidiary equation 

d?&v,t) 
7 + (&2 + cZ)T(o,t) = &r) 

where T(a,t) is the Fourier cosine transform of T(x,t) and 
+((a) is the Fourier cosine transform of the source term. After 
solving (5) subject to the condition &r,O) = 0, we obtain 

m 

T(w) = 4W s a[1 - exp{ - t(02 +E*)}] 

0 
x cos(xu)du. (6) 

This solution is applicable for all cases having source terms 
as described in the introduction. 

We shah consider two specific source functions having 
symmetry about x = 0. 

1. A “uniform strip source” is defined by 

(7) 

This source has a Fourier cosine transform given by 

&J) = 1/(2/x)u-r sin (I (8) 

which, upon insertion into (6), gives the integral solution 
obtained by Thomas Employing the identity 

sin (r cos xu = f [sin (1 + x)u $ sin (1 - x)u], 

partial fractions, and the Fourier sine transform pairs (4) 
p. 19, (20) p. 65, (21) p. 73 and (26) p. 74 listed in Vol. 1 of [3] 
we obtain 

TM) = T,(x) - Ts(x,t). (9) 
where 

&;‘I; - e-‘~shf=x)l, O<XCl, 

E 2e LT sinh (E), x > I,, 
(10) 

and 
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The steady state solution is given by T,(x), which for x = 0, 
yields the speciai case given by Thomas. The behaviour of 
this solution for x = 0 is shown in Fig. 1. 

: t. 

0 2.0 3.0 4.0 5-o 

PMaT)= IWO) 

FIG. 1. Effect of stripwidth, heating time and heat transfer 
coefficient on maximum temperature of thin plate heated by 

uniform strip source. 

2. We define a “Gaussian strip source” by the equation 

q(x) = e-‘*. 

This source has a Fourier cosine transform given by 

ii(o) = + e-a214. 

For this source we obtain the solution 

T(x,t) = Jnexpp% f&t; _ x) 

- erfc i,i(4t+ 1)-x 
L J(4t + 1) li 

+e’X{erfc(i+X)-erfclfJ(41+l) 

+&& Ku 

CIRCULARLY SYMMETRIC SOURCES 

This case is governed by the equations 

C?T 

at 
+ q(x), x > 0, t > 0, 

(12) 

(13) 

(14) 

(15) 

T=O x 2 0, t = 0, (16) 

T=%O 
ax ’ 

x -+ ‘xi, t > 0. (171 

Applying the zero order Hankel transform to (15) and pro- 
ceeding as before, we obtain 

oJo(ax) [l - exp { - t(a2 + c2)}] du, (18) 

where q(u) is the zero-order Hankel transform of the source 
term q(x). 

Again we consider two specific sources : 
1. For a “Gaussian circular source” given by (12) having a 

zero-order Hankel transform 

i&r) = ; ($-c+l (19) 

and for the case of no cooling (E = 0), we obtain the solution 

T(x,t) = 

2. A “uniform disk source” is defined by 

( 

l,o i x 6 I, 
q(x) = 

0.x > 1. 

and its zero-order Hankel transform is 

$0) = J,(u)/u. 

Hence the solution for a disk source is given by 

(20) 

(21) 

P 

T(x,t) = 
I 

“‘yyf2u) [l - exp { - t(cr’ + E’)}] da. (22) 

0 

an integral solution given by Thomas [l]. This integral 
cannot be redliced further; however, for steady state, we 
obtain 

E-~[I - EK&)&,(EX)], x < 1 

x>l 
(23) 

The general case, (22), can be approximated by a definite 
integral over finite limits, i.e. 

” 

T(x,t) = 
J,(ux)J,(u) 

uz + E2 
0 

x rl - exp { - t(u2 + 2))1 do + E,. (24) 
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It can be shown that if U is chosen by the formula 

U= I 
+p{E+~~,x>O 

3E -+ I I 
(25) 

_- 
2J(2)nA ’ 

x = 0, 

where 

A = 2’j4(1 + e- ‘)/x2. 

and E is an acceptable error bound, then 

IF,( < E. 

A comparison of the temperature rise at x = 0 for no 
cooling, (s = 0), for the four source functions is shown in 
Fig. 2. 
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